The program CRAC (Base-line Correction of Accelerogram) is a subroutine subprogram that corrects for a given acceleration time history by adjusting the baseline so that the velocity at the end of the duration is zero and the residual displacement is not unreasonably excessive.

CRAC (Base-line Correction of Accelerogram)

[Purpose]

To correct the baseline and modify the acceleration time history so that the velocity is zero at the end of the duration and the residual displacement is within a reasonable value.

[Usage]

- (1) How to connect
 - CALL CRAC (DT, NN, DDYMAX, DDY, ND, UW1, UW2)

Argument	Туре	Parameter in calling program	Return Parameter
DT	R	Time interval (unit : sec)	Unchanged
NN	Ι	Total number of real data DDY,DY,Y	Unchanged
DDYMAX	R	Maximum value of input acceleration (unit : Gal)	Unchanged
DDY	R 1-D array (ND)	Original acceleration time history (unit : Gal)	Corrected acceleration time history (unit : Gal)
ND	Ι	Dimension size of DDY, UW1, UW2 in calling program	Unchanged
UW1	R 1-D array (ND)	No need to input here	(working area)
UW2	R 1-D array (ND)	No need to input here	(working area)

(2) Necessary subroutines and function subprograms IACC

【Calculation Method】

First, the given acceleration time history $\ddot{y}(t)$ is integrated by using the subroutine IACC and obtains the velocity and displacement time histories $\dot{y}(t)$ and y(t). Then, the modified values of displacement, velocity, and acceleration $\hat{y}(t)$, $\hat{y}(t)$, $\hat{y}(t)$ shall be expressed as follows.

$$\hat{y}(t) = y(t) - \left(\frac{1}{2}a_0t^2 + \frac{1}{6}a_1t^3\right)
\hat{y}(t) = \dot{y}(t) - \left(a_0t + \frac{1}{2}a_1t^2\right)
\hat{y}(t) = \ddot{y}(t) - \left(a_0 + a_1t\right)$$
(a)

If the duration is T, the condition that $\hat{y}(t) = 0$ in the second equation of Eq. (a) is as follows.

$$a_0 = \frac{\dot{y}(T)}{T} - \frac{a_1 T}{2}$$
(b)

Thus, we get

$$\frac{\mathrm{d}a_0}{\mathrm{d}a_1} = -\frac{T}{2} \tag{c}$$

In order to satisfy the condition that the residual displacement $\hat{y}(T)$ at t=T is not unreasonably excessive, the coefficients of the cubic polynomial in parentheses on the right-hand side of the first equation of Eq. (a) are obtained to best fit the curve y(t) by using the following least-squares method.

 $\varepsilon = \int_0^T \left[y(t) - \left(\frac{1}{2} a_0 t^2 + \frac{1}{6} a_1 t^3 \right) \right]^2 dt$

and

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}a_1} = 0 \tag{d}$$

From Eqs. (b), (c), and (d), the coefficient a_1 can be obtained as follows.

$$a_1 = \frac{28}{13} \cdot \frac{1}{T^2} \left[2\dot{y}(T) - \frac{15}{T^5} \int_0^T y(T) (3Tt^2 - 2t^3) dt \right]$$
(e)

In this program, the integration of the right-hand side of Eq. (e) is performed using the simplest trapezoidal rule, since it does not require particularly high accuracy.

If a_1 is determined by Eq. (e), then a_0 is also determined by Eq. (b), and the corrected acceleration time history $\hat{y}(t)$ is calculated by the third equation in Eq. (a).

However, since the maximum value of the corrected acceleration time history $\hat{y}(t)$ is slightly different from the maximum value of the original time history $\ddot{y}(t)$, the entire corrected time history $\hat{y}(t)$ is multiplied by a factor *C* to restore the maximum acceleration to its original value. Where C is the following.

$$C = \left| \ddot{y}(t) \right|_{\max} / \left| \ddot{\ddot{y}}(t) \right|_{\max}$$

[Program List]

C C	* * * * * * * * * * * * * * * * * * *	CRAC CRAC	1 2
C	* * * * * * * * * * * * * * * * * * *	CRAC	3
C	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CRAC	3 4
C	CODED BY Y. OHSAKI	CRAC	5
C	CODED DI T. OROAKI	CRAC	6
C	PURPOSE	CRAC	7
C	TO CORRECT THE ORIGINAL ACCELERATION TIME HISTORY BY BASE-LI		8
C	ADJUSTMENT SO THAT (1) THE TERMINAL VELOCITY VANISHES, AND (2)		9
C	THE PERMANENT DISPLACEMENT CONVERGES WITHIN A REASONABLE LIM		10
C		CRAC	11
С	USAGE	CRAC	12
С	CALL CRAC (DT, NN, DDYMAX, DDY, ND, UW1, UW2)	CRAC	13
С		CRAC	14
С	DESCRIPTION OF ARGUMENTS	CRAC	15
С	DT – TIME INCREMENT IN SEC	CRAC	16
С	NN - TOTAL NUMBER OF DATA IN ACCELERATION TIME HISTORY	CRAC	17
С	DDYMAX - MAX. ACCELERATION IN GALS	CRAC	18
С	DDY(ND) - ORIGINAL/CORRECTED ACCELERATION TIME HISTORY IN GA	LS CRAC	19
С	AT CALL/RETURN	CRAC	20
С	ND - DIMENSION OF DDY, UW1, UW2 IN CALLING PROGRAM	CRAC	21
С	UW1 (ND) – WORKING AREA	CRAC	22
С	UW2(ND) - WORKING AREA	CRAC	23
С		CRAC	24
С	SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED	CRAC	25
С	IACC	CRAC	26
С	AUDRALITATION OD LO (DE ANA DEBUAR DEBUAR DE LUITA LUITA)	CRAC	27
0	SUBROUTINE CRAC (DT, NN, DDYMAX, DDY, ND, UW1, UW2)	CRAC	28
С	DIMENSION DRY (ND) $IIW1$ (ND) $IIW2$ (ND)	CRAC	29 20
С	DIMENSION DDY(ND), UW1(ND), UW2(ND)	CRAC CRAC	$\frac{30}{31}$
U	CALL IACC (DT, NN, DDY, UW1, UW2, ND, DUMMY, DUMMY)	CRAC	32
	TT=REAL $(NN-1)$ *DT	CRAC	33
	T=0.	CRAC	34
	DO 110 M=1, NN	CRAC	35
	UW2 (M) = UW2 (M) * (3. *TT-2. *T) *T**2	CRAC	36
	T=T+DT	CRAC	37
	10 CONTINUE	CRAC	38
	SUM = (UW2(1) + UW2(NN)) / 2.	CRAC	39
	DO 120 M=2, NN-1	CRAC	40
	SUM=SUM+UW2(M)	CRAC	41
	20 CONTINUE	CRAC	42
	SUM=SUM*DT	CRAC	43
	A1=28./13./TT**2*(2.*UW1(NN)-15./TT**5*SUM)	CRAC	44
	A0=UW1 (NN)/TT-A1/2. *TT	CRAC	45
	T=0.	CRAC	46
	ACMAX=0.	CRAC	47
	DO 130 M=1, NN	CRAC	48
	DDY(M) = DDY(M) - A0 - A1 * T	CRAC	49
	ACMAX=AMAX1 (ACMAX, ABS (DDY (M)))	CRAC	50
	T=T+DT	CRAC	51
	30 CONTINUE	CRAC	52

COEF=DDYMAX/ACMAX CRAC 53 DO 140 M=1, NN CRAC 54 DDY (M) =DDY (M) *COEF CRAC 55 140 CONTINUE CRAC 56 RETURN CRAC 57 END CRAC 58