Base－line Correction of Accelerogram－CRAC

The program CRAC（Base－line Correction of Accelerogram）is a subroutine subprogram that corrects for a given acceleration time history by adjusting the baseline so that the velocity at the end of the duration is zero and the residual displacement is not unreasonably excessive．

CRAC（Base－line Correction of Accelerogram）

【Purpose】

To correct the baseline and modify the acceleration time history so that the velocity is zero at the end of the duration and the residual displacement is within a reasonable value．

【Usage】

（1）How to connect
CALL CRAC（DT，NN，DDYMAX，DDY，ND，UW1，UW2）

Argument	Type	Parameter in calling program	Return Parameter
DT	R	Time interval（unit ：sec）	Unchanged
NN	I	Total number of real data DDY，DY，Y	Unchanged
DDYMAX	R	Maximum value of input acceleration （unit：Gal）	Unchanged
DDY	$\begin{gathered} \mathrm{R} \\ \text { 1-D array } \\ \text { (ND) } \end{gathered}$	Original acceleration time history （unit：Gal）	Corrected acceleration time history （unit：Gal）
ND	I	Dimension size of DDY，UW 1，UW2 in calling program	Unchanged
UW 1	$\begin{gathered} R \\ \text { 1-D array } \\ \text { (ND) } \end{gathered}$	No need to input here	（working area）
UW2	R 1－D array （ND）	No need to input here	（working area）

（2）Necessary subroutines and function subprograms
IACC

【Calculation Method】

First, the given acceleration time history $\ddot{y}(t)$ is integrated by using the subroutine IACC and obtains the velocity and displacement time histories $\dot{y}(t)$ and $y(t)$. Then, the modified values of displacement, velocity, and acceleration $\hat{y}(t), \hat{\dot{y}}(t), \hat{\dot{y}}(t)$ shall be expressed as follows.

$$
\left.\begin{array}{l}
\hat{y}(t)=y(t)-\left(\frac{1}{2} a_{0} t^{2}+\frac{1}{6} a_{1} t^{3}\right) \\
\hat{\dot{y}}(t)=\dot{y}(t)-\left(a_{0} t+\frac{1}{2} a_{1} t^{2}\right) \tag{a}\\
\hat{\hat{y}}(t)=\ddot{y}(t)-\left(a_{0}+a_{1} t\right)
\end{array}\right\}
$$

If the duration is T, the condition that $\hat{\dot{y}}(t)=0$ in the second equation of Eq. (a) is as follows.

$$
\begin{equation*}
a_{0}=\frac{\dot{y}(T)}{T}-\frac{a_{1} T}{2} \tag{b}
\end{equation*}
$$

Thus, we get

$$
\begin{equation*}
\frac{\mathrm{d} a_{0}}{\mathrm{~d} a_{1}}=-\frac{T}{2} \tag{c}
\end{equation*}
$$

In order to satisfy the condition that the residual displacement $\hat{y}(T)$ at $t=T$ is not unreasonably excessive, the coefficients of the cubic polynomial in parentheses on the right-hand side of the first equation of Eq. (a) are obtained to best fit the curve $y(t)$ by using the following least-squares method.

$$
\varepsilon=\int_{0}^{T}\left[y(t)-\left(\frac{1}{2} a_{0} t^{2}+\frac{1}{6} a_{1} t^{3}\right)\right]^{2} \mathrm{~d} t
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} \varepsilon}{\mathrm{~d} a_{1}}=0 \tag{d}
\end{equation*}
$$

From Eqs. (b), (c), and (d), the coefficient a_{1} can be obtained as follows.

$$
\begin{equation*}
a_{1}=\frac{28}{13} \cdot \frac{1}{T^{2}}\left[2 \dot{y}(T)-\frac{15}{T^{5}} \int_{0}^{T} y(T)\left(3 T t^{2}-2 t^{3}\right) \mathrm{d} t\right] \tag{e}
\end{equation*}
$$

In this program, the integration of the right-hand side of Eq. (e) is performed using the simplest trapezoidal rule, since it does not require particularly high accuracy.

If a_{1} is determined by Eq. (e), then a_{0} is also determined by Eq. (b), and the corrected acceleration time history $\hat{\hat{y}}(t)$ is calculated by the third equation in Eq. (a).

However, since the maximum value of the corrected acceleration time history $\hat{\hat{y}}(t)$ is slightly different from the maximum value of the original time history $\ddot{y}(t)$, the entire corrected time history $\hat{y}(t)$ is multiplied by a factor C to restore the maximum acceleration to its original value. Where C is the following.

$$
C=|\ddot{y}(t)|_{\max } /|\hat{\dot{y}}(t)|_{\max }
$$

【Program List】		
C *	* $* *$	CRAC 1
C	SUBROUTINE FOR BASE-LINE CORRECTION OF ACCELEROGRAM	CRAC 2
C *	$* *$	CRAC 3
C		CRAC 4
C	CODED BY Y. OHSAKI	CRAC 5
C		CRAC 6
C	PURPOSE	CRAC 7
C	TO CORRECT THE ORIGINAL ACCELERATION TIME HISTORY BY BASE-LINE	CRAC 8
C	ADJUSTMENT SO THAT (1) THE TERMINAL VELOCITY VANISHES, AND (2)	CRAC 9
C	THE PERMANENT DISPLACEMENT CONVERGES WITHIN A REASONABLE LIMIT	CRAC 10
C		CRAC 11
C	USAGE	CRAC 12
C	CALL CRAC (DT, NN, DDYMAX, DDY, ND, UW1, UW2)	CRAC 13
C		CRAC 14
C	DESCRIPTION OF ARGUMENTS	CRAC 15
C	DT - TIME INCREMENT IN SEC	CRAC 16
C	NN - TOTAL NUMBER OF DATA IN ACCELERATION TIME HISTORY	CRAC 17
C	DDYMAX - MAX. ACCELERATION IN GALS	CRAC 18
C	DDY (ND) - ORIGINAL/CORRECTED ACCELERATION TIME HISTORY IN GALS	CRAC 19
C	AT CALL/RETURN	CRAC 20
C	ND - DIMENSION OF DDY, UW1, UW2 IN CALLING PROGRAM	CRAC 21
C	UW1 (ND) - WORKING AREA	CRAC 22
C	UW2 (ND) - WORKING AREA	CRAC 23
C		CRAC 24
C	SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED	CRAC 25
C	IACC	CRAC 26
C		CRAC 27
	SUBROUTINE CRAC (DT, NN, DDYMAX, DDY, ND, UW1, UW2)	CRAC 28
C		CRAC 29
	DIMENSION DDY (ND), UW1 (ND), UW2 (ND)	CRAC 30
C		CRAC 31
	CALL IACC (DT, NN, DDY, UW1, UW2, ND, DUMMY, DUMMY)	CRAC 32
	$\mathrm{TT}=\mathrm{REAL}(\mathrm{NN}-1) * \mathrm{DT}$	CRAC 33
	$\mathrm{T}=0$.	CRAC 34
	D0 $110 \mathrm{M}=1$, NN	CRAC 35
	UW2 (M) $=\mathrm{UW} 2(\mathrm{M}) *(3 . * T \mathrm{~T}-2 . * \mathrm{~T}) * T \mathrm{*} * 2$	CRAC 36
	$\mathrm{T}=\mathrm{T}+\mathrm{DT}$	CRAC 37
110	CONTINUE	CRAC 38
	SUM= (UW2 (1) +UW2 (NN)) /2.	CRAC 39
	D0 $120 \mathrm{M}=2$, $\mathrm{NN}-1$	CRAC 40
	SUM=SUM+UW2 (M)	CRAC 41
120	CONTINUE	CRAC 42
	SUM $=$ SUM $*$ DT	CRAC 43
	A1 $=28 . / 13 . /$ TT $* * 2 *$ (2. *UW1 (NN) $-15 . / \mathrm{TT} * * 5 *$ SUM $)$	CRAC 44
	A0=UW1 (NN) /TT-A1/2. *TT	CRAC 45
	$\mathrm{T}=0$.	CRAC 46
	ACMAX $=0$.	CRAC 47
	D0 $130 \mathrm{M}=1$, NN	CRAC 48
	DDY (M) = DDY (M) - A0 - $11 * T$	CRAC 49
	ACMAX=AMAX1 (ACMAX, ABS (DDY (M)))	CRAC 50
	$\mathrm{T}=\mathrm{T}+\mathrm{DT}$	CRAC 51
130	CONTINUE	CRAC 52

COEF=DDYMAX/ACMAX CRAC 53
DO $140 \mathrm{M}=1$, NN CRAC 54
DDY (M) $=$ DDY (M) $*$ COEF CRAC 55
140 CONTINUE CRAC 56
RETURN CRAC 57
END CRAC 58

