Differentiation by Fourier Transform—DIFR

The program DIFR (**Di**fferentiation by Fourier Transform) is a subroutine subprogram that calculates the derivative of data \dot{x}_m ($m=0, 1, 2, \dots, N-1$) by using the Fourier transform and Fourier inverse transform of N discrete-valued data x_m ($m=0, 1, 2, \dots, N-1$) given at equal interval in the time domain.

Note that if there are large discontinuities in the time history to be differentiated, the error will be large. An example of the use of this program is given in the example of the subroutine INFR.

DIFR (**Di**fferentiation by Fourier Transform)

[Purpose]

To differentiate equally spaced time history data using the Fast Fourier Transform.

[Usage]

(1) How to connect

CALL DIFR (N, X, ND, DT)

Argument	Туре	Parameter in calling program	Return Parameter
N	I	Total number of 1-D array X	Unchanged
X	R 1-D array (ND)	Time history data to be differentiated	Differentiated time history data
ND	I	Dimension size of X in calling program (ND .GE. N)	Unchanged
DT	R	Time increment (unit: sec)	Unchanged

(2) Necessary subroutines and function subprograms

FAST

(3) Remarks

N must be less than or equal to 8192. (But it can be changed easily.)

[Calculation Method]

When N discrete-valued data x_m (m=0, 1, 2, ..., N-1) at equal interval Δt are given in the time domain, first Fourier transform them to obtain the complex Fourier coefficients C_k in the frequency domain. Then,

after performing the following operations, the derivative \dot{x}_m ($m = 0, 1, 2, \dots, N - 1$) can be obtained by performing the inverse Fourier transform.

$$D_0 = 0$$

$$D_k = i k C_k , \quad D_{N-k} = D_k^* \qquad k = 1, 2, \dots, N/2 - 1$$

$$D_{N/2} = 0$$

$$\dot{x}_m = \frac{2\pi}{N\Delta t} \sum_{k=0}^{N-1} D_k e^{i(2\pi k m/N)}$$
 $m = 0, 1, 2, \dots, N-1$

The fast Fourier transform program FAST is used for the Fourier transform and the inverse Fourier transform. To make it convenient to use the Fourier, add a trailing zero to make the number of data a power of 2, and then complex the data by the 'INITIALIZATION' block in the program. At the end of the Fourier transform, the complex Fourier coefficients C_k are all multiplied by N, but the correction is done after the inverse Fourier transform is completed.

[Program List]

```
DIFR
                                                                          1
     SUBROUTINE FOR DIFFERENTIATION BY FOURIER TRANSFORM
                                                                          2
                                                                    DIFR
  3
                                                                    DIFR
C
                                                                    DIFR
                                                                          4
С
                                      CODED BY Y. OHSAKI
                                                                    DIFR
                                                                          5
C
                                                                    DIFR
                                                                          6
C
     PURPOSE
                                                                    DIFR
                                                                          7
С
       TO DIFFERENTIATE AN EQUI-SPACED TIME HISTORY BY APPLICATION OF
                                                                    DIFR
                                                                          8
C
       FAST FOURIER TRANSFORM
                                                                    DIFR
                                                                          9
С
                                                                    DIFR
                                                                         10
C
     USAGE
                                                                    DIFR
                                                                         11
C
       CALL DIFR (N, X, ND, DT)
                                                                    DIFR
                                                                         12
С
                                                                    DIFR
                                                                         13
С
     DESCRIPTION OF ARGUMENTS
                                                                    DIFR
                                                                         14
C
             - TOTAL NUMBER OF DATA N. LE. 8192
                                                                    DIFR
                                                                         15
С
       X(ND) - ORIGINAL/DIFFERENTIATED DATA AT CALL/RETURN
                                                                    DIFR
                                                                         16
C
             - DIMENSION OF X IN CALLING PROGRAM
                                                                    DIFR
                                                                         17
С
       DT
             - TIME INCREMENT IN DATA
                                                                    DIFR
                                                                         18
С
                                                                    DIFR
                                                                         19
С
     SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
                                                                    DIFR
                                                                         20
С
       FAST
                                                                    DIFR
                                                                         21
C
                                                                    DIFR
                                                                         22
     SUBROUTINE DIFR (N, X, ND, DT)
                                                                    DIFR
                                                                         23
C
                                                                    DIFR
                                                                         24
     COMPLEX
               C(8192)
                                                                    DIFR
                                                                         25
     DIMENSION X (ND)
                                                                    DIFR
                                                                         26
     PARAMETER (P2=6. 283185)
                                                                    DIFR
                                                                         27
C
                                                                    DIFR
                                                                         28
C
     INITIALIZATION
                                                                    DIFR
                                                                         29
С
                                                                    DIFR
                                                                         30
     DO 110 M=1, N
                                                                    DIFR
                                                                         31
     C(M) = CMPLX(X(M), 0.)
                                                                    DIFR 32
```

	110	CONTINUE	DIFR	33
		NT=2	DIFR	34
	120	IF (NT. GE. N) GO TO 130	DIFR	35
		NT=NT*2	DIFR	36
		GO TO 120	DIFR	37
	130	IF (NT. EQ. N) GO TO 150	DIFR	38
		DO 140 M=N+1, NT	DIFR	39
		C(M) = (0., 0.)	DIFR	40
	140	CONTINUE	DIFR	41
	150	NFOLD=NT/2+1	DIFR	42
C			DIFR	43
C		FOURIER TRANSFORM	DIFR	44
C			DIFR	45
		CALL FAST (NT, C, 8192, -1)	DIFR	46
C			DIFR	47
C		DIFFERENTIATION	DIFR	48
C			DIFR	49
		C(1) = (0., 0.)	DIFR	50
		DO 160 K=2, NFOLD-1	DIFR	51
		C(K) = CMPLX(0., REAL(K-1)) *C(K)	DIFR	52
		C(NT-K+2) = CONJG(C(K))	DIFR	53
	160	CONTINUE	DIFR	54
		C(NFOLD) = (0., 0.)	DIFR	55
C			DIFR	56
C		FOURIER INVERSE TRANSFORM	DIFR	57
C			DIFR	58
		CALL FAST (NT, C, 8192, +1)	DIFR	59
		P=P2/REAL (NT) **2/DT	DIFR	60
		DO 170 M=1, N	DIFR	61
		X(M) = REAL(C(M)) *P	DIFR	62
	170	CONTINUE	DIFR	63
		RETURN	DIFR	64
		END	DIFR	65