Soil Response to Earthquake Excitation—SRES

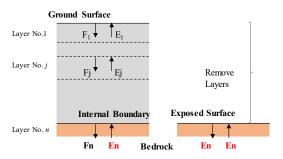
When the thickness, unit volume weight, shear modulus, and damping coefficient of each layer in a horizontally stratified ground are given and the input acceleration time history at the top of any reference layer is specified, the program SRES (Soil Response to Earthquake Excitation) is a subroutine subprogram that calculates the response acceleration time history at the top of any objective layer.

SRES (Soil Response to Earthquake Excitation)

[Purpose]

When an input acceleration time history at the top of the specified reference layer in a horizontally stratified ground, the acceleration response time history and its maximum value at the top of the specified objective layer are calculated using the frequency response function.

[Usage]


(1) How to connect

Return Parameter Argument Type Parameter in calling program Total number of layers including L Ι Unchanged bottom stratum (L.LE. 60) R Thickness of each layer 1-D array TH Unchanged (unit:m) (ND1) R Unit volume weight of each layer 1-D array UW Unchanged $(unit:tf/m^3)$ (ND1) R Elastic shear modulus of each layer 1-D array G Unchanged $(unit:tf/m^2)$ (ND1) R Scatter damping coefficient of each 1-D array ALPHA Unchanged layer (unit : 1/sec) (ND1) R Material damping coefficient of each 1-D array BETA Unchanged layer (unit : nondimension) (ND1)

CALL SRES (L, TH, UW, G, ALPHA, BETA, ND1, LOBJ, LREF, DT, NN, DDY, ACC, ND2, ACMAX, IND)

ND1	Ι	Dimension size of TH, UW, G, ALPHA, and BETA in calling program	Unchanged
LOBJ	Ι	Number of objective layer	Unchanged
LREF	Ι	Number of reference layer	Unchanged
DT	R	Time increment of acceleration time history (unit : Sec)	Unchanged
NN	Ι	Total number of acceleration data (NN .LE. 8192)	Unchanged
DDY	R 1-D array (ND2)	Acceleration time history at surface of reference layer (unit : Gal)	Unchanged
ACC	R 1-D array (ND2)	No need to input here	Acceleration time history at surface of objective layer (unit : Gal)
ND2	Ι	Dimension size of DDY and ACC in calling program (ND2 .GE. NN)	Unchanged
ACMAX	R	No need to input here	Maximum acceleration at surface of objective layer (ACC) (unit : Gal)
IND	Ι	See the following Table	Unchanged

DI	D	Reference Layer		
IND		Internal	Exposed	
Objective	Internal	11	12	
Layer	Exposed	21	-	

- (2) Necessary subroutines and function subprograms
 - FESP FAST
- (3) Remarks
 - i) Layer thickness of the bottom stratum TH(L) is not necessary.
 - ii) The ground surface is always considered the internal boundary surface.
 - iii) If IND = 21, the objective layer must be located deeper than the reference layer.
 - iv) The case that both the reference and objective layers are exposed boundaries is not permitted.

[Calculation Method]

The calculation is carried out in the following steps.

i) The acceleration time history $\xi s(t)$ of the input seismic motion given to the reference layer s is Fourier transformed by the Fast Fourier Transform program FAST, after adding subsequent zeros if

- SRES
- ii) The frequency response function $Zr/s(\omega)$ of the objective layer r to the reference layer s is calculated by the program **FESP** using the given thickness H, unit volume weight γ , shear modulus G, and damping factors *alpha* and *beta* of each layer.
- iii) Multiply $Zr/s(\omega)$ by $F_s(\omega)$ to obtain the harmonic vibration component of the response, $F_r(\omega)$.
- iv) The time history of the response acceleration $\ddot{\xi}_r(t)$ in the objective layer *r* is obtained by performing an inverse Fourier transform of $F_r(\omega)$ using the program **FAST** again.
- v) Find the maximum value of the response acceleration time history $\ddot{\xi}_r(t)$.

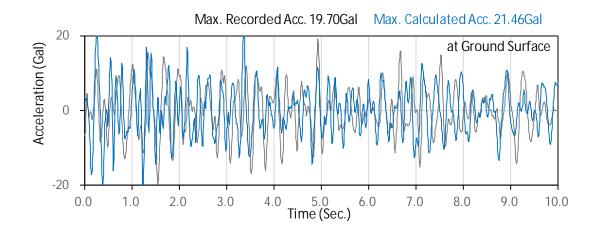
Both the reference and the objective layers can be treated as internal or exposed boundary surfaces. The combination of the two layers can be specified by the value of the argument *IND*, but neither the reference layer nor the objective layer can be exposed boundary surface. And if the objective layer is exposed and the reference layer is internal (IND = 21), there are two things to note. One is that the objective layer must be located deeper than the reference layer. The other is that this program calls subroutine **FESP** to calculate the frequency response function, but **FESP** cannot handle the case where the objective layer is exposed. So, in this case, the frequency response function is calculated assuming that the objective layer is internal, and the reference layer is exposed (IND2 = 1 in **FESP**), and the inverse of the obtained frequency response function is computed.

This program assumes that the shear modulus and damping coefficient of each layer are constant, i.e., not strain-dependent. Therefore, this program can only be applied in the case of small seismic motions where the maximum shear strain of each layer is almost within 0.01% for all layers. The method of calculating the maximum shear strain is shown in [Example 2] of the program **FESP**.

[Program List]						
С	* * * * * * * * * * * * * * * * * * * *	SRES	1			
С	SUROUTINE FOR SOIL RESPONSE TO EARTHQUAKE MOTION	SRES	2			
С	* * * * * * * * * * * * * * * * * * * *	SRES	3			
С		SRES	4			
С	CODED BY Y. OHSAKI	SRES	5			
С		SRES	6			
С	PURPOSE	SRES	7			
С	TO COMPUTE, BY MEANS OF FREQUENCY RESPONSE FUNCTION, THE RES-	SRES	8			
С	PONSE ACCELERATION TIME-HISTORY AT THE TOP OF THE SPECIFIED	SRES	9			
С	OBJECTIVE LAYER IN A HORIZONTALLY LAYERED SOIL DEPOSIT, WHEN	SRES	10			
С	AN INPUT ACCELERATION TIME-HISTORY IS GIVEN AT THE TOP OF THE	SRES	11			
С	SPECIFIED REFERENCE LAYER.	SRES	12			
С		SRES	13			
С	USAGE	SRES	14			
С	CALL SRES (L, TH, UW, G, ALPHA, BETA, ND1, LOBJ, LREF, DT, NN, DDY, ACC,	SRES	15			
С	ND2, ACMAX, IND)	SRES	16			
С		SRES	17			
С	DESCRIPTION OF ARGUMENTS	SRES	18			
С	L – TOTAL NUMBER OF LAYERS, INCLUDING THE BASE LAYER	SRES	19			
С	L. LE. 60	SRES	20			
С	TH(ND1) - THICKNESS IN METERS	SRES	21			
С	UW(ND1) – UNIT WEIGHT IN TONS/CU.METER	SRES	22			
С	G(ND1) - SHEAR MODULUS IN TONS/SQ.METER	SRES	23			
С	ALPHA(ND1) - SCATTER DAMPING COEFFICIENT IN 1/SEC	SRES	24			

С		- MATERIAL DAMPING COEFFICIENT IN DECIMAL FRACTION		25
С		- DIMENSION OF TH, UW, G, ALPHA BETA IN CALLING PROGRAM	SRES	26
С			SRES	27
С			SRES	28
С			SRES	29
С	NN	- TOTAL NUMBER OF DATA IN THE TIME-HISTORIES	SRES	30
С		NN. LE. 8192	SRES	31
С			SRES	32
С		-	SRES	33
С			SRES	34
С			SRES	35
С	IND		SRES	36
С			SRES	37
С		I I REFERENCE LAYER I		38
С			SRES	39
С			SRES	40
С				41
С			SRES	42
С		0	SRES	43
С			SRES	44
С			SRES	45
С	DEMADIA		SRES	46
С	REMARKS		SRES	47
C	(1) THICKN		SRES	48
С			SRES	49
С			SRES	50
С			SRES	51
С		-	SRES	52
С	EXPOSE		SRES	53
C	CUDDOUTINEC		SRES	54 55
C			SRES	55 56
C	FESP FAST		SRES	56
С			SRES	57 50
			SRES	58 50
	* A		SRES	59 60
С	DIMENCION TI		SRES	60
			SRES	61 62
			SRES	62 62
C	COMPLEX H		SRES	63 64
C			SRES	64 65
C	FOURTER TRAN		SRES	65 66
С	NT O		SRES	66
	NT=2		SRES	67
110) IF (NT. GE. NN)		SRES	68
	NT=NT*2		SRES	69
	GO TO 110		SRES	70
120	NFOLD=NT/2+1		SRES	71
	DO 130 M=1, N		SRES	72
			SRES	73
130	CONTINUE		SRES	74
	IF (NN. EQ. NT)		SRES	75
	DO 140 M=NN+		SRES	76
	C(M) = (0., 0.)		SRES	77

	140	CONTINUE	SRES	78
		CALL FAST (NT, C, 8192, -1)	SRES	79
С	100		SRES	80
C		FREQUENCY RESPONSE FUNCTION	SRES	81
C			SRES	82
		DF=1. /REAL(NT)/DT	SRES	83
		IF (IND. EQ. 21) GO TO 160	SRES	84
		CALL FESP (L, TH, UW, G, ALPHA, BETA, ND1, LOBJ, LREF, DF, NFOLD, H, 4097, 0,	SRES	85
	;	* IND-11)	SRES	86
		GO TO 180	SRES	87
	160	CALL FESP (L, TH, UW, G, ALPHA, BETA, ND1, LREF, LOBJ, DF, NFOLD, H, 4097, 0, 1)	SRES	88
		DO 170 K=1, NFOLD	SRES	89
		H(K) = (1., 0.) / H(K)	SRES	90
	170	CONTINUE	SRES	91
С			SRES	92
С		OBJECTIVE TIME-HISTORY	SRES	93
С			SRES	94
	180	C(1) = C(1) * H(1)	SRES	95
		DO 190 K=2, NFOLD-1	SRES	96
		C(K) = C(K) * H(K)	SRES	97
		C(NT-K+2) = CONJG(C(K))	SRES	98
	190	CONTINUE	SRES	99
		C(NFOLD) = C(NFOLD) *H(NFOLD)	SRES	
		CALL FAST (NT, C, 8192, +1)	SRES	
		ACMAX=0.	SRES	
		DO 200 M=1, NN	SRES	
		ACC(M) = REAL(C(M))	SRES	
		ACMAX=AMAX1 (ACMAX, ABS (ACC (M)))	SRES	
	200	CONTINUE	SRES	
		RETURN	SRES	
		END	SRES	108


【Example1】

For the ground shown in the table below, read the acceleration time history observed at the top of the base stratum at a depth of 10.90 m from the file EQ.03. Give it as input and compute the response acceleration time history at the ground surface.

Layer No.	Upper depth (m)	Layer thickness (m)	Unit volume weight (tf/m ³)	Elastic shear modulus (tf/m ²)
1	0.00	3.80	1.50	1200
2	3.80	3.20	1.67	2900
3	7.00	3.90	1.85	5700
4	10.90	-	1.95	50000

```
С
       DIMENSION TH(4), UW(4), G(4), ALPHA(4), BETA(4), DDY(1000),
      *
                   ACC (1000)
       DATA
                   L/4/, TH/3. 8, 3. 2, 3. 9, 0. 0/, UW/1. 50, 1. 67, 1. 85, 1. 95/,
                   G/1200., 2900., 5700., 50000/, ALPHA/4*2.0/, BETA/4*0.02/,
      *
                   LOBJ/1/, LREF/4/, IND/11/
С
       READ(5,501) DT, NN, (DDY(M), M=1, NN)
       CALL SRES (L, TH, UW, G, ALPHA, BETA, 4, LOBJ, LREF, DT, NN, DDY, ACC, 1000,
      *
                   ACMAX, IND)
       STOP
С
  501 FORMAT (T51, F10. 0, I10/(8F10. 0))
       END
```

Output: Calculated results are stored in the array *ACC* and plotted as the blue line in the following figure. The acceleration time history in the file EQ.02 (recorded at the ground surface at the same time) is also shown in this figure in gray line for reference.

Note: The maximum response acceleration is different from that in the Japanese version manual. This is because the value of attenuation *ALPA* was set to 2.0 in the English version, the same as in Dr. Ohsaki's book, while it was 1.8 in the Japanese version. This is also true for the following example.

[Example2]

Using the same ground model as in Example 1, read the acceleration time history on the ground surface from file EQ.02, and remove the surface soil up to a depth of 10.90 m to expose the upper plane of the base stratum and calculate the acceleration time history at this plane.

```
С
       DIMENSION TH(4), UW(4), G(4), ALPHA(4), BETA(4), DDY(1000),
      *
                  ACC (1000)
      DATA
                  L/4/, TH/3. 8, 3. 2, 3. 9, 0. 0/, UW/1. 50, 1. 67, 1. 85, 1. 95/,
                  G/1200., 2900., 5700., 50000/, ALPHA/4*2.0/, BETA/4*0.02/,
      *
                  LOBJ/4/, LREF/1/, IND/21/
      *
С
       READ (5, 501) DT, NN, DDYMAX, (DDY (M), M=1, NN)
       WRITE(6,601) DDYMAX
      CALL SRES (L, TH, UW, G, ALPHA, BETA, 4, LOBJ, LREF, DT, NN, DDY, ACC, 1000,
      *
                  ACMAX, IND)
       WRITE(6,602) ACMAX
       STOP
С
  501 FORMAT (T51, F10. 0, I10, F10. 0/(8F10. 0))
  601 FORMAT ('MAX ACCELERATION'/T3, 'GROUND SURFACE', F10. 2, TR1, '(GAL)')
  602 FORMAT (T3, 'EXPOSED ROCK ', F10. 2, TR1, '(GAL)')
       END
```

Output: Calculated results are stored in the array *ACC* and the maximum acceleration is 8.94 Gal as shown below.

MAX ACCELERATION

GROUND SURFACE	19.70	(GAL)
EXPOSED ROCK	8.94	(GAL)