Envelope Function—ENVL

The program ENVL (**Envelope** Function) is a subroutine subprogram that calculates the shape of the envelope curve of the acceleration time history when given the magnitude of the earthquake.

ENVL (Envelope Function)

[Purpose]

To create an envelope curve of the seismic motion (acceleration time history) according to the magnitude of the earthquake.

[Usage]

(1) How to connect

CALL ENVL (EM, TB, TC, TD, N, E, ND)

Argument	Туре	Parameter in calling program	Return Parameter
EM	R	Magnitude of earthquake	Unchanged
ТВ	R	No need to input here	Start time of principal shock (unit : sec)
TC	R	No need to input here	End time of principal shock (unit : sec)
TD	R	No need to input here	Duration time (unit : sec)
N	Ι	Number of points that represent an envelope function	Unchanged
Е	R 1-D array (ND)	No need to input here	Envelope function
ND	Ι	Dimension size of E in calling program (ND .GE. N)	Unchanged

(2) Necessary subroutines and function subprograms

None

[Calculation Method]

The envelopment curve function E(t) is defined by a quadratic curve between 0 and T_b , a horizontal straight line with E(t) = 1 between T_b and T_c representing the principal motion, and an exponential curve between T_c and T_d (T_d : duration of the earthquake motion), as shown in the following figure.

$$\begin{array}{cccc} 0 \leq t \leq T_{\rm b} & : & E(t) = (t/T_{\rm b})^2 \\ T_{\rm b} \leq t \leq T_{\rm c} & : & E(t) = 1 \\ T_{\rm c} \leq t \leq T_{\rm d} & : & E(t) = e^{-a(t-T_{\rm c})} \end{array} \end{array}$$
(a)

Determine the values of T_b , T_c , and T_d , and calculate the value of E(t) at any number of time points equally divided between 0 and T_d . If E(t) = 0.1 at $t = T_d$, then the third equation in equation (a) must be the following equation. $a = -\ln(0.1)/(T_d - T_c)$

The duration of seismic motion, T_d (in sec), is given by the following equation if the magnitude of the earthquake is M.

$$T_{\rm d} = 10^{0.31M - 0.774}$$

The relationship between the time ratios of T_b and T_c to T_d and the magnitude is shown in the following table. For values other than the magnitudes indicated, the time ratios in the table are linearly interpolated or extrapolated according to the magnitude.

$$T_{\rm b} = \left[0.12 - 0.04(M - 7) \right] T_{\rm d}$$

$$T_{\rm c} = \left[0.50 - 0.04(M - 7) \right] T_{\rm d}$$

Magnitude M	T_b/T_d	T_{c}/T_{d}
8	0.08	0.46
7	0.12	0.50
6	0.16	0.54

[Program List]

С	* *	* * * * * * * * * * * * * * * * *	ENVL	1
C	C SUBROUTINE FOR ENVELOPE FUNCTION			2
С	* >	* * * * * * * * * * * * * * * * * *	ENVL ENVL	3
С			ENVL	4
С		CODED BY Y. OHSAKI	ENVL	5
С			ENVL	6
С		PURPOSE	ENVL	7
С		TO GENERATE THE ENVELOPE FUNCTION IN COMPLIANCE WITH THE	ENVL	8
С		MAGNITUDE OF EARTHQUAKE	ENVL	9
С			ENVL	10
С		USAGE	ENVL	11
С		CALL ENVL (EM, TB, TC, TD, N, Z, ND)	ENVL	12
С			ENVL	13
С		DESCRIPTION OF ARGUMENTS	ENVL	14
С		EM – MAGNITUDE OF EARTHQUAKE	ENVL	15
С		TB - TIME AT THE BEGINNING OF PRINCIPAL SHOCK IN SEC	ENVL	16
С		TC – TIME AT THE END OF PRINCIPAL SHOCK IN SEC	ENVL	17
С		TD – DURATION OF EARTHQAKE MOTION IN SEC	ENVL	18
С		N – TOTAL NUMBER OF POINTS DESCRIBING THE ENVELOPE FUNCTION		19
С		Z(ND) – ENVELOPE FUNCTION	ENVL	20
С		ND – DIMENSION OF Z IN CALLING PROGRAM ND. GE. N	ENVL	21
С			ENVL	22
С		SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED	ENVL	23
С		NONE	ENVL	24
С		CURRENT THE FULL (FM TR TC TR N 7 ND)	ENVL	25 26
C		SUBROUTINE ENVL (EM, TB, TC, TD, N, Z, ND)	ENVL	26 27
С		DIMENSION Z (ND)	ENVL ENVL	27 28
С		DIMENSION Z (ND)	ENVL	28 29
U		TD=10. ** (0. 31*EM-0. 774)	ENVL	29 30
		DT=TD/REAL(N-1)	ENVL	30 31
		TB = (0.12 - (EM - 7.) * 0.04) * TD	ENVL	32
		TC = (0.50 - (EM - 7.) * 0.04) * TD	ENVL	33
		A = -ALOG(0, 1) / (TD - TC)	ENVL	34
		DO 130 M=1, N	ENVL	35
		T = REAL (M-1) * DT	ENVL	36
		IF (T. GE. TB) GO TO 110	ENVL	37
		Z(M) = (T/TB) **2	ENVL	38
		GO TO 130	ENVL	39
	110	IF (T. GT. TC) GO TO 120	ENVL	40
		Z(M) = 1.	ENVL	41
		GO TO 130	ENVL	42
	120	Z(M) = EXP(-A*(T-TC))	ENVL	43
	130	CONTINUE	ENVL	44
		RETURN	ENVL	45
		END	ENVL	46

[Example]

Calculate the values of time T_b , T_c , and T_d (duration) assuming that the magnitude is M = 7.3.

```
DIMENSION E (51)
DATA NN/51/, EM/7. 3/
C
C
CALL ENVL (EM, TB, TC, TD, N, E, 51)
WRITE (6, 601) EM, TB, TC, TD
STOP
C
601 FORMAT (' EM=', F4. 1//T4, 'TB', F7. 2/T4, 'TC', F7. 2/T4, 'TD', F7. 2)
END
```

Output:

EM= 7.3

TB 3.33TC 15.05TD 30.83