Simulated Wave Generation－WGEN

The program WGEN（Simulated Wave Generation）is a subroutine subprogram that creates an acceleration time history for simulated earthquake motions consistent with the target Ohsaki＇s spectrum（5\％ damping factor）when the magnitude and epicentral distance of an earthquake are given．

WGEN（Simulated Wave Generation）

【Purpose】

When the magnitude and epicentral distance of an earthquake are given，to generate an acceleration time history consistent with Ohsaki＇s velocity response spectrum of a 5% damping factor．

【Usage】

（1）How to connect
CALL WGEN（EM，R，NN，IR，ACC，ND，DT，AMAX，VMAX，MYCYCL，ERR，UW1，UW2）

Argument	Type	Parameter in calling program	Return Parameter
EM	R	Magnitude of earthquake	Unchanged
R	R	Epicentral distance（unit ：km）	Unchanged
NN	I	Number of Acceleration data	Unchanged
IR	I	Any integer to initiate sequence for random number generation	Changed
ACC	R－D array （ND）	No need to input here	Simulated acceleration time history
（unit：Gal）			

VMAX	R	No need to input here	Max. velocity of time history (unit: $\mathrm{cm} / \mathrm{sec}$)
MYCYCL	I	Max number of iteration	Actual number of iteration
ERR	R	Root-mean-square allowable error for convergence	Actual error
UW1	R 1-D array (ND)	No need to input here	(Workspace)
UW2	R 1-D array (ND)	No need to input here	(Workspace)

(2) Necessary subroutines and function subprograms

ENVL, OHSP, VELK, FAST, CRAC, IACC, ERES, RAND
(3) Remarks
$N N$ must be a power of 2 not exceeding 4096.

【Calculation Method】

The structure of the program is approximately as follows.
(a) Arguments
$N N$ is the number of data in the simulated seismic motion time history to be generated, and should not exceed 4096. The following $N N$ may be appropriate depending on the magnitude of the earthquake. If you want a $N N$ that is not a power of 2 , you can make it a power of 2 by adding some trailing zeros.

Magnitude M	6	7	8
$N N$	512	1024	2048
Duration $T_{d}(\mathrm{sec})$	12.2	24.9	50.8
Time Interval $\Delta t(\mathrm{sec})$	0.024	0.024	0.025

The argument $I R$ is an initial value given in the form of RAND $(I R)$ to invoke the function subprogram for generating uniformly distributed random numbers between 0 and 1 that the user selects from his library and quotes in the program (here, the name is tentatively given as RAND). The argument $I R$ is depending on the system that provide RAND($I R$). Depending on the initial value of the argument $I R$, different seismic motions can be generated for the same given conditions.

The argument $E R R$ is the allowable error to terminate the iterative calculation, and from a practical standpoint, it does not need to be smaller than 5%. In the case of $E R R=0.05$, the calculation converges after about 4 to 6 iterations, so in the usual case, it is sufficient to set the argument $M X C Y C L$, which gives the maximum number of iterations, to around 10 .
(b) Phase differences

Call the subroutine ENVL to find the duration T_{d} and calculate the time interval Δt of the time history. The envelope curve $E(x)$ is defined by 33 points, including the points corresponding to its two ends, i.e., time 0 and $T_{d}(x=0$ and $x=1)$, or in other words, the points that divide the x-axis between 0 and 1 into 32 equal parts. Next, find the cumulative probability density distribution $E E(x)$ by sequentially adding the values of the envelope curve $E(\mathrm{x})$ starting from 0 , and then find the value of x such that $E E(x)=p$ when p is an arbitrary random number uniformly distributed between 0 and 1.

If we repeat this for (NN/2-2) random numbers, we get a sample of (NN/2-2) x values distributed between 0 and 1 . Converting these to a distribution between 0 and (-2π), a set of phase differences PDIF, i.e., $\Delta \phi_{k}(k=1,2, \cdots, N N / 2-2)$, can be determined. The shape of the distribution of these phase differences will be similar to the shape of the envelope curve. Therefore, we can expect that the simulated earthquake motion produced will have the envelope shape given by the subroutine $E N V \mathrm{~L}$ to a good approximation.
(c) Phase angles

Once the phase differences are determined, the phase angle $P H I$ can be calculated in the following order, assuming that $P H I$ (1) can be ignored and $P H I$ (2) is assumed to be $\phi_{2}=0$.

$$
\phi_{k+1}=\phi_{k}+\Delta \phi_{k} \quad k=2,3, \cdots, N N / 2-2
$$

(d) Target spectrum and Fourier first order approximation

In this section, we first calculate the vibration period of each component.

$$
T_{k}=T_{\mathrm{d}} / k \quad k=2,3, \cdots, N F O L D
$$

T_{1} is infinity, but the program assumes that $T_{1}=2 T_{2}$.
Since the Ohsaki's spectrum, which is the target spectrum, is originally defined with a period between 0.02 and 2 sec , we find the minimum order $K M I N$, the maximum order $K M A \mathrm{X}$, and the number of periods $N E$ that fall within this range.

Next, call the subroutine OHSP to obtain the velocity response spectrum with a damping factor of 0% at each period point T_{k} (set to 0 outside the above range), $\left(S_{V}\right)_{k}^{h=0}$, and use the approximate equality of this spectrum and the Fourier amplitude spectrum as a first approximation of the amplitude F_{k}. Call the OHSP again to obtain the velocity response spectrum with a damping factor of 5%, $\left(S_{V}\right)_{k}^{\text {target }}$, which will be the target spectrum in the future.
(e) Iterative approximation

The first iteration $(N C Y C L=1)$ is started, and the complex Fourier coefficients C_{k} are obtained from the first approximation of F_{k} and the phase angle ϕ_{k}. The inverse Fourier transform of C_{k} is then used as the first approximation of the acceleration time history $A C C$.
(f) Base-line correction

At this point, it is desirable to call the subroutine CRAC to perform a baseline correction of the acceleration time history. The corrected time history is then Fourier transformed to obtain a new first approximation of the amplitude F_{k}.
(g) Correction of Fourier amplitude

For the baseline-corrected acceleration time history of the first approximation, we call the subroutine ERES to obtain the velocity response spectrum $\left(S_{V}\right)_{k}$ with a damping factor of 5%, which does not match the target spectrum $\left(S_{V}\right)_{k}^{\text {target }}$. So, we calculate the ratio of the two as follows,

$$
r(k)=\left(S_{V}\right)_{k}^{\text {target }} /\left(S_{V}\right)_{k}
$$

Modify the amplitude F_{k} as $F_{k} \rightarrow r(k) \cdot F_{k}$ and use this as the second approximation of F_{k} to enter the second iteration $(N C Y C L=2)$.
(h) Convergence error

The same calculation is repeated below, and the calculation is terminated when the number of iterations reaches a predetermined value $(M X C Y C L)$, or when the average of the squares of the error ratio $r(k)$ becomes smaller than the allowable error $E R R$. At this point, the data stored in the array $A C C$ is the acceleration time history of the simulated earthquake motion to be evaluated.

The arithmetic of the program has been described above, but we would like to add a few more things related to this program.
i) Depending on the numerical value of the argument $I R$, different seismic motions can be generated for the same magnitude and the same epicentral distance of the earthquake. By using this program, the maximum acceleration and velocity of the generated earthquake motion would not be very far from the maximum acceleration and velocity calculated by OHAC and VELK, respectively, regardless of the value of $I R$. However, if possible, it is desirable that they are very close. Although it is difficult to evaluate objectively, one of the requirements for simulated earthquake ground motions is that, if possible, the shape of the generated ground motion should have the characteristics of natural ground motions.

In practice, we will repeat several trials, giving appropriate values to the argument $I R$, and try to find one that meets these conditions. You will probably be able to reach a satisfactory result within 10 trials.
ii) As described previously in section (d), the arithmetic method of this program first determines the velocity response spectrum $\left(S_{V}\right)_{k}^{h=0}$ with 0% damping factor at each period point T_{k}. Then, focusing on the approximation between this velocity response spectrum and the Fourier amplitude spectrum, the first approximation of the Fourier amplitude F_{k} is determined. Then, in subsequent iterations, successive approximations of F are calculated using the velocity response spectrum $\left(S_{V}\right)_{k}^{\text {target }}$ with a damping factor of 5% as the target spectrum.

However, if we omit the step of finding $\left(S_{V}\right)_{k}^{h=0}$ for the sole purpose of determining the first approximation of F_{k}, and instead use $\left(S_{V}\right)_{k}^{\text {target }}$ with a damping factor of 5% as the first approximation of F_{k} from the beginning, the result will be almost the same.

【Program List】

	* * * * * * * * * * * * * * * * * * *	WGEN
C	SUBROUTINE FOR SIMULATED WAVE GENERATION	WGEN
C	* * * * * * * * * * * * * * * * * * *	WGEN
C		WGEN
C	CODED BY Y. OHSAKI	WGEN
C		WGEN
C	PURPOSE	WGEN
C	TO GENERATE, FOR GIVEN MAGNITUDE AND EPICENTRAL DISTANCE OF	WGEN
C	AN EARTHQUAKE, AN ACCELERATION TIME-HISTORY CONSISTENT WITH	WGEN
C	OHSAKI'S VELOCITY RESPONSE SPECTRUM OF 5-PERCENT DAMPING	WGEN
		WGE

```
C USAGE WGEN 12
C CALL WGEN(EM, R, NN, IR, ACC, ND, DT, AMAX, VMAX, MXCYCL, ERR, UW1, UW2) WGEN }1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
    SUBROUTINE WGEN (EM, R, NN, IR, ACC, ND, DT, AMAX, VMAX, MXCYCL, ERR, UW1,
    * UW2)
    COMPLEX C(4096)
    DIMENSION ACC (ND), UW1 (ND), UW2 (ND)
    DIMENSION E (33), X (33), EE (33)
    DIMENSION PDIF (2046), PHI (2049), F (2049), T (2049), SV (2049), H(1), WGEN }4
    * RES (2049,1),RR(2049) WGEN 45
    PARAMETER (PI2=6. 283185) WGEN 46
    DATA DX/0.03125/, H0/0./, H/0.05/ WGEN 47
C
C PHASE DIFFERENCES WGEN 49
C WGEN 50
    CALL ENVL (EM, TB, TC, TD, 33, E, 33) WGEN 51
    DT=TD/REAL (NN) WGEN 52
    NN2=NN/2 WGEN 53
    NFOLD=NN2+1 WGEN 54
    X(1)=0. WGEN 55
    EE(1)=0. WGEN 56
    DO 110 M=2,33 WGEN 57
    X (M) =REAL (M-1)*DX WGEN 58
    EE (M)=EE (M-1)+E (M) WGEN 59
1 1 0 \text { CONTINUE WGEN 60}
    DO 120 M=2,33 WGEN 61
    EE(M)=EE(M)/EE (33) WGEN 62
120 CONTINUE
WGEN 63
    DO 150 K=1, NN2-2 WGEN 64
```

C
C

```
            P=RAND (IR) WGEN 65
            D0 130 J=2, 33
                                    WGEN 66
            IF(P. LE. EE(J)) GO TO 140 WGEN 67
    130 CONTINUE
WGEN 68
    140 PDIF (K)=- (X (J-1)+(P-EE (J-1))/ (EE (J)-EE (J-1))*DX)*PI2 WGEN 69
    150 CONTINUE
WGEN 70
C
C PHASE ANGLES
C WGEN 73
        PHI (2)=0. WGEN 74
            DO 160 K=1, NN2-2
            PHI (K+2) =AMOD (PHI (K+1) +PDIF (K), PI2)
    160 CONTINUE WGEN 77
C
C TARGET SPECTRUM AND FIRST FOURIER APPROXIMATION
C
        T(1)=TD*2.
        DO 170 K=2, NFOLD
        T(K)=TD/REAL (K-1) WGEN 83
    170 CONTINUE
        DO 180 K=2, NFOLD WGEN 85
        IF(T (K). LE. 2.) GO TO 190 WGEN }8
    180 CONTINUE
```



```
        DO 200 K=KMIN, NFOLD
        IF(T (K).LT.0.02) GO TO 210 WGEN 90
    200 CONTINUE
        KMAX=NFOLD WGEN 92
        G0 TO 220
    210 KMAX=K-1
    220 NE=KMAX-KMIN+1 WGEN 95
        D0 230 K=2, NFOLD
        CALL OHSP (EM, R, H0, T (K), SV0, K-2)
        IF (K. LT. KMIN. OR. K. GT. KMAX) SV0=0.
        F(K)=SV0/TD
    230 CONTINUE
        D0 240 K=2, NFOLD
        CALL OHSP (EM, R, H (1), T (K), SV (K), K-2)
        IF (K. LT. KMIN. OR. K. GT. KMAX) SV (K)=0.
    240 CONTINUE
C
C ITERATIVE COMPUTATION
C
        ENN=1. /REAL (NN)
        NCYCL=0
    250 NCYCL=NCYCL+1
        C (1) = (0. , 0. )
        D0 260 K=2, NN2
        C (K)=F (K)*CMPLX (COS (PHI (K) ), SIN (PHI (K) ))
        C(NN+2-K)=CONJG (C (K))
    260 CONTINUE
        C}(\mathrm{ NFOLD ) =F (NFOLD) * (1. , 0. )
    CALL FAST (NN, C, 4096, +1)
WGEN 71
WGEN 72
WGEN 75
WGEN 76
        WGEN
        WGEN 84
        WGEN }8
        WGEN }8
        WGEN 91
        WGEN 93
WGEN 94
        WGEN 95
        WGEN 96
        WGEN 97
        WGEN 98
        WGEN }9
        WGEN 100
        WGEN 101
        WGEN 102
        WGEN 103
        WGEN 104
        WGEN 105
        WGEN 106
        WGEN 107
        WGEN 108
    WGEN 109
    WGEN 110
    WGEN 111
    WGEN 112
    WGEN 113
    WGEN 114
    WGEN }11
    WGEN 116
    WGEN 117
```

```
            AMAX=0. WGEN 118
            DO 270 M=1, NN
            ACC (M) =REAL (C (M) )
            AMAX=AMAX1 (AMAX, ABS (ACC (M) ))
    2 7 0 ~ C O N T I N U E ~
C
C BASE LINE CORRECTION
C
            CALL CRAC (DT, NN, AMAX, ACC, ND, UW1, UW2)
            DO 280 M=1,NN
            C (M)=CMPLX (ACC (M),0. )
    280 CONTINUE
            CALL FAST (NN, C, 4096, -1)
            D0 290 K=2, NF0LD
            F (K)=CABS (C (K))*ENN
    290 CONTINUE
C
C MODIFICATION OF FOURIER AMPLITUDES
C
            CALL ERES (1, H, 1, NFOLD, T, 2049, DT, NN, ACC, ND, 2, VMAX, RES)
            DO 300 K=2, NFOLD
            RR (K) =SV (K) /RES (K, 1)
            F (K) =F (K) *RR (K)
        300 CONTINUE
C
C ERROR FOR CONVERGENCE
C
        EPS=0.
        DO 310 K=KMIN, KMAX
        EPS=EPS+(1. -RR (K))**2
    310 CONTINUE
            EPS=SQRT (EPS/REAL (NE))
C
            IF (EPS. LE. ERR) GO TO 320
            IF (NCYCL. EQ. MXCYCL) GO TO 330
            GO TO 250
3 2 0 ~ M X C Y C L = N C Y C L ~ W G E N ~ 1 5 4 ~
3 3 0 ~ E R R = E P S ~ W G E N ~ 1 5 5 ~
RETURN WGEN 156
END WGEN 157
WGEN 119
WGEN 120
WGEN 121
WGEN }12
WGEN }12
WGEN 124
WGEN 125
WGEN 126
WGEN }12
WGEN 128
WGEN 129
WGEN 130
WGEN 131
WGEN 132
WGEN 133
WGEN 134
WGEN 135
WGEN 136
WGEN 137
WGEN 138
WGEN 139
WGEN 140
WGEN 141
WGEN 142
WGEN 143
WGEN }14
WGEN 145
WGEN }14
WGEN 147
WGEN 148
WGEN 149
WGEN 150
WGEN 151
WGEN 152
WGEN 153
```


【Example】

Based on the assumption of an earthquake of magnitude 7.3 with an epicentral distance of 25.0 km , calculate the acceleration time history of simulated earthquake motion on the bedrock.

```
C
    DIMENSION ACC (1024), VEL (1024), UW1 (1024), UW2 (1024), T (513), H(1),
    * RES (513, 1), VRES (513)
    DATA NN/1024/, EM/7.3/, R/25.0/, H/0.05/
    DATA IR/101/, MCYCL/10/, ERR/0.05/
C
    CALL WGEN (EM, R, NN, IR, ACC, 1024, DT, AMAX, VMAX, MCYCL, ERR, UW1, UW2)
    CALL IACC (DT, NN, ACC, VEL, UW1, 1024, VMAX, DMAX)
C
    TD=10. 0** (0.31*EM-0.774)
    NFOLD=NN/2+1
    DO }110\textrm{K}=1,NFOL
    T (K)=TD/REAL (K)
110 CONTINUE
    D0 120 K=1, NFOLD
        IF(T (K). LE. 2.0) GO TO 130
    120 CONTINUE
    130 KMIN=K
        D0 140 K=KMIN, NFOLD
        IF (T (K). LE. 0. 02) GO T0 150
    140 CONTINUE
        KMAX=NFOLD
        GO TO 160
    150 KMAX=K-1
    1 6 0 ~ N E = K M A X - K M I N + 1
        D0 170 K=1, NE
        T (K) =T (K+KMIN-1)
    170 CONTINUE
        CALL ERES (1, H, 1, NE, T, 513, DT, NN, ACC, 1024, 2, VMAX, RES)
        D0 180 K=1, NE
        VRES (K)=RES (K, 1)
    180 CONTINUE
        STOP
        END
```

Output: The acceleration time history of the simulated earthquake motion is stored in the array $A C C$, the velocity time history integrated from the acceleration time history is stored in the array $V E L$, and the velocity response spectrum with a damping factor of 5% is stored in the array VRES. These results can be plotted as shown in Figures (a), (b), and (c). The thin line in Figure (c) is the target Ohsaki's spectrum.

Magnitude $M=7.3$, Epicentral distance $R=25 \mathrm{~km}$

(a)

(b)

(c)

Notes: Due to differences in the random number generation program used, the maximum values of acceleration and velocity are slightly different between the English and Japanese versions of the manual.

