## Lagrangian Interpolation－LAIN

The program LAIN（Lagrangian Interpolation）is a subroutine subprogram that interpolates the given equally spaced data at the equidistant dividing points using the Lagrange＇s four－point method．The application of this subroutine is limited to the case where the data are given as equally spaced points on the axes，otherwise the axes must be transformed once so that the given data become equally spaced data． Example 2 is an example of such a case．

## LAIN（Lagrangian Interpolation）

## 【Purpose】

To interpolate the given equally spaced data with equally spaced division points using Lagrange＇s four－ point method．

## 【Usage】

（1）How to connect
CALL LAIN（DX，NN，A，ND1，AA，ND2，NDIV）

| Argument | Type | Parameter in calling program | Return Parameter |
| :---: | :---: | :--- | :--- |
| DX | R | Interval of original data | Interval of interpolated data |
| NN | I | Total number of original data | Total number of interpolated data |
| A | R <br> 1－D array <br> （ND1） | Original equally spaced data | Unchanged |
| ND1 | I | Dimension size of A in calling <br> program | Unchanged |
| RA | R array <br> （ND2） | No need to input here | Interpolated equally spaced data |
| ND2 | I | Dimension size of AA in calling <br> program | Unchanged |
| NDIV | I | Number of subdivision（NDIV．LE．20） | Unchanged |

(2) Necessary subroutines and function subprograms

## None

(3) Remarks
i) $\quad N D 2$, the dimension size of AA, must be $N D 2 \geq(N N-1) \times N D I V+1$.
ii) Interpolation may change the maximum value of the data, so correct it if necessary.

## 【Calculation Method】

According to the Lagrange's interpolation formula, the function $g(x)$ given the values $g\left(x_{k}\right)(k=$ $1,2,3, \cdots, n+1$ ) at $n+1$ points $x_{n}=1,2,3, \cdots, n+1$, respectively, can be approximated by the following $n$th order polynomial $f(x)$.

$$
\begin{equation*}
f(x)=\sum_{k=1}^{n+1} g\left(x_{k}\right) \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \cdots\left(x-x_{k-1}\right)\left(x-x_{k+1}\right) \cdots\left(x-x_{n+1}\right)}{\left(x_{k}-x_{1}\right)\left(x_{k}-x_{2}\right) \cdots\left(x_{k}-x_{k-1}\right)\left(x_{k}-x_{k+1}\right) \cdots\left(x_{k}-x_{n+1}\right)} \tag{a}
\end{equation*}
$$

The right-hand side of Eq. (a) is a polynomial of degree $n$ with respect to $x$. If $x=x_{k}$, it is clear that $f\left(x_{k}\right)=g\left(x_{k}\right)$. The function $f(x)$ coincides with the function $g(x)$ at $x_{n}=1,2,3, \cdots, n+1$.

Now, if we set $n=3$ in Eq. (a), that is, if we use the four-point method to give the value of the function $g(x)$ at four points, Eq. (a) becomes the following.

$$
\begin{align*}
f(x) & =g\left(x_{1}\right) \frac{\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)} \\
& +g\left(x_{2}\right) \frac{\left(x-x_{1}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)} \\
& +g\left(x_{3}\right) \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{4}\right)}{\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)\left(x_{3}-x_{4}\right)}  \tag{b}\\
& +g\left(x_{4}\right) \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)}
\end{align*}
$$

Assuming that $x_{1}, x_{2}, x_{3}$, and $x_{4}$ have equal spacing $\Delta x$, we can set the following.

$$
x_{1}=-\Delta x, x_{2}=0, x_{3}=\Delta x, x_{4}=2 \Delta x
$$

Substituting the above relationship into Eq. (b), we get

$$
\begin{align*}
f(x) & =g\left(x_{1}\right) \frac{(x-0)(x-\Delta x)(x-2 \Delta x)}{(-\Delta x)(-2 \Delta x)(-3 \Delta x)} \\
& +g\left(x_{2}\right) \frac{(x+\Delta x)(x-\Delta x)(x-2 \Delta x)}{(\Delta x)(-\Delta x)(-2 \Delta x)} \\
& +g\left(x_{3}\right) \frac{(x+\Delta x)(x-0)(x-2 \Delta x)}{(2 \Delta x)(\Delta x)(-\Delta x)}  \tag{c}\\
& +g\left(x_{4}\right) \frac{(x+\Delta x)(x-0)(x-\Delta x)}{(3 \Delta x)(2 \Delta x)(\Delta x)}
\end{align*}
$$

Let $\xi=x / \Delta x$ as shown in the following figure, and write $g\left(x_{1}\right), g\left(x_{2}\right), g\left(x_{3}\right)$, and $g\left(x_{4}\right)$ as $g_{1}, g_{2}, g_{3}$, and $g_{4}$. Then, Eq. (c) becomes

$$
\begin{equation*}
f(\xi)=c_{1}(\xi) g_{1}+c_{2}(\xi) g_{2}+c_{3}(\xi) g_{3}+c_{4}(\xi) g_{4} \tag{d}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1}=\frac{(\xi-0)(\xi-1)(\xi-2)}{(-1)(-2)(-3)} \\
& c_{2}=\frac{(\xi+1)(\xi-1)(\xi-2)}{(+1)(-1)(-2)} \\
& c_{3}=\frac{(\xi+1)(\xi-0)(\xi-2)}{(+2)(+1)(-1)} \\
& c_{4}=\frac{(\xi+1)(\xi-0)(\xi-1)}{(+3)(+2)(+1)}
\end{aligned}
$$



If we assume that the interval $\Delta x$ of the given data is to be divided into equally spaced $n d i v$ segments, then the first half of the program, we compute Eq. (e) for $\xi$ of ( $3 n d i v+1$ ) between $\xi=-1$ and $\xi=2$. Then we compute $f(\xi)$ in Eq. (d) at ndiv points between $\xi=0$ and 1 by sequentially equating $g_{1}, g_{2}, g_{3}$, and $g_{4}$ to the four subsequent values of the given data. The program that performs the latter part of the calculation is rather complicated. The reason is that it also handles the irregular interpolations in the first and last intervals of the given data together.

## 【Program List】

|  | $* * * * * * * * * * * * * * * * * * * * * * *$ | LAIN 1 |
| :---: | :---: | :---: |
| C | SUBROUTINE FOR LAGRANGEAN INTERPOLATION | LAIN 2 |
| C | $* * * * * * * * * * * * * * * * * * * * * * *$ | LAIN 3 |
| C |  | LAIN 4 |
| C | PURPOSE | LAIN 5 |
| C | TO INTERPOLATE THE GIVEN, EQUI-SPACED DATA BY LAGRANGE'S | LAIN 6 |
| C | FOUR-POINTS METHOD | LAIN 7 |
| C |  | LAIN 8 |
| C | USAGE | LAIN 9 |
| C | CALL LAIN (DX, NN, A, ND1, AA, ND2, NDIV) | LAIN 10 |
| C |  | LAIN 11 |
| C | DESCRIPTION OF ARGUMENTS | LAIN 12 |
| C | DX - INTERVAL OF ORIGINAL/INTERPOLATED DATA | LAIN 13 |
| C | AT CALL/RETURN | LAIN 14 |
| C | NN - TOTAL NUMBER OF ORIGINAL/INTERPOLATED DATA | LAIN 15 |
| C | AT CALL/RETURN NN(AT CALL). GE. 4 | LAIN 16 |
| C | A (ND1) - ORIGINAL EQUI-SPACED DATA | LAIN 17 |
| C | ND1 - DIMENSION OF A IN CALLING PROGRAM | LAIN 18 |
| C | AA (ND2) - INTERPOLATED EQUI-SPACED DATA | LAIN 19 |


| C | ND2 - DIMENSION OF AA IN CALLING PROGRAM | LAIN 20 |
| :---: | :---: | :---: |
| C | ND2. GE. NN (AT CALL) *NDIV | LAIN 21 |
| C | NDIV - NUMBER OF SUBDIVISION NDIV. LE. 20 | LAIN 22 |
| C |  | LAIN 23 |
| C | SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED | LAIN 24 |
| C | NONE | LAIN 25 |
| C |  | LAIN 26 |
|  | SUBROUTINE LAIN (DX, NN, A, ND1, AA, ND2, NDIV) | LAIN 27 |
| C |  | LAIN 28 |
|  | DIMENSION A (ND1) , AA (ND2) , XD (4) , D (4) , C (80, 4) , AD (4) | LAIN 29 |
|  | DATA $\quad$ XD/-1., 0., 1., 2. /, D/-6., 2., -2., 6./ | LAIN 30 |
| C |  | LAIN 31 |
|  | DIV $=$ REAL (NDIV) | LAIN 32 |
|  | I4 $=$ NDIV*3+1 | LAIN 33 |
|  | D0 $130 \mathrm{I}=1, \mathrm{I} 4$ | LAIN 34 |
|  | X=REAL (I-NDIV-1) /DIV | LAIN 35 |
|  | D0 $120 \mathrm{~J}=1,4$ | LAIN 36 |
|  | $\mathrm{P}=1$. | LAIN 37 |
|  | D0 $110 \mathrm{~K}=1,4$ | LAIN 38 |
|  | IF (K. EQ. J) G0 T0 110 | LAIN 39 |
|  | $\mathrm{P}=\mathrm{P} *(\mathrm{X}-\mathrm{XD}(\mathrm{K})$ ) | LAIN 40 |
| 110 | CONTINUE | LAIN 41 |
|  | $\mathrm{C}(\mathrm{I}, \mathrm{J})=\mathrm{P} / \mathrm{D}(\mathrm{J})$ | LAIN 42 |
| 120 | CONTINUE | LAIN 43 |
| 130 | CONTINUE | LAIN 44 |
|  | $\mathrm{N}=0$ | LAIN 45 |
|  | IS $=1$ | LAIN 46 |
|  | IE=NDIV*2 | LAIN 47 |
|  | D0 $170 \mathrm{M}=2, \mathrm{NN}-2$ | LAIN 48 |
|  | D0 $140 \mathrm{~J}=1,4$ | LAIN 49 |
|  | $\mathrm{AD}(\mathrm{J})=\mathrm{A}(\mathrm{M}+\mathrm{J}-2)$ | LAIN 50 |
| 140 | CONTINUE | LAIN 51 |
|  | D0 $160 \mathrm{I}=\mathrm{IS}$, IE | LAIN 52 |
|  | $\mathrm{AA} 1=0$. | LAIN 53 |
|  | D0 $150 \mathrm{~J}=1,4$ | LAIN 54 |
|  | $\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AD}(\mathrm{J}) * \mathrm{C}(\mathrm{I}, \mathrm{J})$ | LAIN 55 |
| 150 | CONTINUE | LAIN 56 |
|  | $\mathrm{N}=\mathrm{N}+1$ | LAIN 57 |
|  | $A A(N)=A A 1$ | LAIN 58 |
| 160 | CONTINUE | LAIN 59 |
|  | IF (M. EQ. 2) IS=NDIV+1 | LAIN 60 |
|  | IF (M. EQ. NN-3) IE=I4 | LAIN 61 |
| 170 | CONTINUE | LAIN 62 |
|  | $\mathrm{NN}=\mathrm{N}$ | LAIN 63 |
|  | DX=DX/DIV | LAIN 64 |
|  | RETURN | LAIN 65 |
|  | END | LAIN 66 |

## 【Example1】

Interpolate the data shown in the table below by dividing it into four parts to obtain a time history with a time interval of $0.5 / 4=0.125$ seconds．

Table Sample data

| No | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $T=m \Delta t$ | 0.0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | 4.5 | 5.0 | 5.5 | 6.0 | 6.5 | 7.0 | 7.5 |
| $x_{m}$ | 5 | 32 | 38 | -33 | -19 | -10 | 1 | -8 | -20 | 10 | -1 | 4 | 11 | -1 | -7 | -2 |

C
DIMENSION A（16），AA（64）
DATA DT／0．5／，NN／16／，A／5．0，32．0，38．0，－33．0，－19．0，－10．0，1．0，－8．0，－20． 0 ，
＊$\quad 10.0,-1.0,4.0,11.0,-1.0,-7.0,-2.0 /, \mathrm{NDIV} / 4 /$
C
CALL LAIN（DT，NN，A，16，AA，64，NDIV）
STOP
END

Output：The thin line and circle dots are the given data，and the thick blue line is the interpolated time history．


## 【Example2】

Assume that the table data used in Example1 is given by $T_{k}=16 / k$ second and interpolate each time interval into three parts．

The time point $T_{k}$ at which the data is given is not equally spaced，but if we take the reciprocal of this， we get equally spaced data with an interval of $1 / 16$ ．Therefore，first we can perform such a transformation， then interpolate data by LAIN，and finally take the reciprocal of $T_{r}$ again to restore the time．

C

```
DIMENSION A (16), AA (48), T (48)
DATA NN/16/, A/5.0, 32.0, 38.0, -33.0, -19.0, -10.0, 1.0, -8.0, -20.0,
*
10.0, -1.0, 4.0, 11.0, -1.0, -7.0, -2.0/, NDIV/3/
```

C
DT=1. 0/REAL (NN)
DT1=DT
CALL LAIN (DT, NN, A, 16, AA, 48, NDIV)
D0 $110 \mathrm{~K}=1$, NN
TR=REAL $(\mathrm{K}-1) * \mathrm{DT}+\mathrm{DT1}$
$T(K)=1.0 / T R$
110 CONTINUE
STOP
END

Output: The result is represented by the data in the array $A A$ for each time stored in the array T. The plot is as follows. The thin line and circle dots are the given data, and the thick blue line is the interpolated time history. The horizontal axis uses a logarithmic scale.


